INTERNATIONAL JOURNAL OF CREATIVE
 RESEARCH THOUGHTS (IJCRT)
 An International Dpen Access, Peer-reviewed, Refereed Journal

Dynamical System With Mathematical Applications

Hussein A. M. Ahmed1, Mohammed Ibrahim Ahmed Alfakey2
${ }^{1}$ Department of Computer Sciences, College of Sciences \& Arts, Tanomah, King Khalid University, Saudi Arabia

${ }^{2}$ Department of Computer Sciences, College of Sciences \& Arts, Tanomah, King Khalid University, Saudi
Arabia

Abstract

In this work, we study dynamical systems with mathematical applications. We deal with specific properties of dynamical systems, namely stability and optimal control. Both qualities are common in industrial economics and engineering. We have selected some important examples and geometric solutions such as B. Portfolio selection and related economic problems. We have described the corresponding differential equations and used optimal control theory to approach the problem, and we have found some geometric solutions in dynamical systems and control theory.

Definition (1.1) [1] Monoid written additively, M is a set and Φ is a function $\Phi: U \subset T \times M \rightarrow M$

With $\mathrm{I}(x)=\{t \in T:(t, x) \in U\}, \Phi(0, x)=x$

$$
\Phi\left(t_{2}, \Phi\left(t_{1}, x\right)\right)=\Phi\left(t_{1}+t_{2}, x\right), \text { for } t_{1}, t_{2}, t_{1}+t_{2} \in I(x)
$$

The function $\Phi(t, x)$ is called the evolution function of the dynamical system: it associates to every point in the set M a unique image, depending on the variable t, called the evolution parameter. M is called phase space or state space, while the variable x represents an initial state of the system, we often write $\Phi_{x}(t):=\Phi(t, x)$, $\emptyset^{t}(x):=\emptyset(t, x)$

If we take one of the variables as constant. $\Phi_{x}: I(x) \rightarrow M$ is called flow through x and its graph trajectory through x. The set
$\gamma_{x}:=\{\Phi(t, x): t \in I(X)\}$ is called orbit through x. A subset S of the state space M is called Φ-invariant if for all x in S and all t in T
$\Phi(t, x) \in S$. For S to be Φ-invariant, we require that $I(x)=T$ for all x in S. That is, the flow through x should be defined for all time for every element of S.A real dynamical system, real-time dynamical system or flow is a tuple (T, M, Φ) with T an open interval in the real numbers R, M a manifold locally diffeomorphic to Banach space, and Φ a continuous function. If $T=R$ we call the system global, if T is restricted to the nonnegative real's we call the system a semi-flow. If Φ is continuously differentiable we say the system is a

Differentiable dynamical system. If the manifold M is locally diffeomorphic to R^{n} the dynamical system is finite-dimensional and if not, the dynamical system is infinite-dimensional. Define a discrete-time dynamical system to be a $\operatorname{pair}(M, \varphi)$, where M is a metric space and $\varphi: M \rightarrow M$ a continuous map.

Let (M, φ) and (N, Ψ) be dynamical systems and $\theta: M \rightarrow N$ be a homeomorphism, that is, θ is continuous, one-to-one, and onto, and its inverse is continuous. The homeomorphism θ is a called a topological conjugacy if $\varphi=\theta^{-1} \Psi^{\theta}$. Let A be a finite alphabet and $\sum a$ set of bi-infinite sequences on A, that is, for $s \in \sum, s=$ $\cdots, s-2, s-1 . s_{0} . s_{1} s_{2} ., \ldots$ where $s_{n} \in A$. For $\delta>1$ define a metric on \sum by

$$
\begin{equation*}
d \sum\left(s, s^{\prime}\right)=\sum_{n=-\infty}^{\infty} \frac{d_{A}\left(s_{n}, s^{\prime} n\right)}{\delta|n|}, \tag{1.1}
\end{equation*}
$$

Where

$$
d_{A}(a, b)= \begin{cases}0 & a=b, \\ 1 & a \neq b .\end{cases}
$$

The metric space \sum is called a shift space if there is a map $\sigma: \sum \rightarrow \sum$, such that if $s^{\prime}=\sigma(s)$, then $s^{\prime}{ }_{n}=$ s_{n-1}.The important requirement is \sum is closed under the action of σ

Let $F \subseteq C^{k}(R)$ be the subspace of k-times continuously differentiable scalar functions on R . On this space there are metrics

$$
d F\left(f, f^{\prime}\right)=\int_{-\infty}^{\infty}\left|f(t)-f^{\prime}(t)\right| \beta^{-|t|} d t
$$

For $\beta>1, \mathrm{~F}$ is a signal space, if the map $\Phi_{\tau}: F \rightarrow F$ where $\Phi_{\tau}(f)(t)=f(t+\tau), \tau \in R,(\Sigma, \sigma)$ there can be constructed a dynamical system $\left(F, \Phi_{\tau}\right),\left(F, \Phi_{1}\right)$ is conjugate to $(\Sigma, \sigma), h: \Sigma \rightarrow F$ which is a homeomorphism between (Σ, σ) and $\left(h(\Sigma), \Phi_{1}\right)$. the function $\emptyset_{a}(t) \in c^{k}(R)$, for $a \in$ Athat satisfy the following conditions. 1. $\emptyset_{a}(t) \neq \emptyset_{b}(t)$ almost everywhere for $\mathrm{a} \neq \mathrm{b}$,
2. $\max _{a, b}\left|\emptyset_{a}(t)-\emptyset_{b}(t)\right|<G \gamma^{-|t|}, \gamma>\beta>1$, and
3. $\min _{a \neq b} \int_{|t|<\frac{1}{2}}\left|\emptyset_{a}(t)-\emptyset_{b}(t)\right| d t>\int_{|t|<\frac{1}{2}} \max \left|\varnothing_{a}(t)-\emptyset_{b}(t)\right| d t$.

Where β is the same as used for the metric (3).
Define $h: \Sigma \rightarrow c^{k}(R)$ by

$$
\begin{equation*}
h(s)=\sum_{n=-\infty}^{\infty} \emptyset_{s_{n}}(t-n) . \tag{1.2}
\end{equation*}
$$

Define $F=\{f(t+\tau): f \in h(\Sigma), 0 \leq \tau<1\}$.It is easy to check that $h(\sigma(s))=\Phi_{1}(\sigma(s))$, and so, such an F is a signal space.

Corollary (1.1) [2]

There exist $K, J>0$ such that $K d_{\Sigma}\left(s, s^{\prime}\right) \geq d_{F}\left(h(s), h\left(s^{\prime}\right)\right) \geq J d_{\Sigma}\left(s, s^{\prime}\right)$.

Proof

The prove there exists $K>0$ such that $d_{F}\left(h(s), h\left(s^{\prime}\right)\right) \leq K d_{\Sigma}\left(s, s^{\prime}\right)$. The following chain of inequalities holds:

$$
\begin{aligned}
d_{F}\left(h(s), h\left(s^{\prime}\right)\right) & =\int_{-\infty}^{\infty}\left|\sum_{n=-\infty}^{\infty} \emptyset_{s_{n}}(t-n)-\emptyset_{s^{\prime}}(t-n)\right| \beta^{-|t|} d t \\
& \leq \int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty}\left|\emptyset_{s_{n}}(t-n)-\emptyset_{s^{\prime}}{ }_{n}(t-n)\right| \beta^{-|t|} d t \\
& =\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} d_{A}\left(s_{n}, s^{\prime}{ }_{n}\right)\left|\emptyset_{s_{n}}(t-n)-\emptyset_{s^{\prime}}(t-n)\right| \beta^{-|t|} d t \\
& <\int_{-\infty}^{\infty} \sum_{n=-\infty}^{\infty} d_{A}\left(s_{n}, s^{\prime}{ }_{n}\right) G \gamma^{-|t-n|} \beta^{-|t|} d t=G \sum_{n=-\infty}^{\infty} d_{A}\left(s_{n}, s^{\prime}{ }_{n}\right) \int_{-\infty}^{\infty} \gamma^{-|t-n|} \beta^{-|t|} d t
\end{aligned}
$$

Where $n \geq 0$ and $n<0$ separately,
$\int_{-\infty}^{\infty} \gamma^{-|t-n|} \beta^{-|t|} d t=\frac{\gamma^{-|n|}+\beta^{-|n|}}{\log \beta \gamma}+\frac{\beta^{-|n|}-\gamma^{-|n|}}{\log _{\beta}^{\frac{\gamma}{\beta}}} \leq\left(\frac{2}{\log \beta \gamma}+\frac{1}{\log \frac{\gamma}{\beta}}\right) \beta^{-|n|} \equiv C \beta^{-|n|}$. Hence, putting $\mathrm{K}=\mathrm{GC}$,

$$
d_{F}\left(h(s), h\left(s^{\prime}\right)\right) \leq G C \sum_{n=-\infty}^{\infty} \frac{d_{A}\left(s_{n}, s_{n}^{\prime}\right)}{\beta^{|n|}}=K d_{\Sigma}\left(s, s^{\prime}\right)
$$

Next, we prove $J d_{\Sigma}\left(s, s^{\prime}\right) \leq d_{F}\left(h(s), h\left(s^{\prime}\right)\right)$. The following chain of inequalities holds:

$$
\begin{aligned}
& d_{F}\left(h(s), h\left(s^{\prime}\right)\right)=\sum_{m} \int_{m-\frac{1}{2}}^{m+\frac{1}{2}}\left|\sum_{n} \emptyset_{s_{n}}(t-n)-\emptyset_{s^{\prime}{ }_{n}}(t-n)\right| \beta^{-|t|} d t \\
& =\sum_{m} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{n} \emptyset_{s_{n}}(t-n+m)-\emptyset_{s^{\prime}{ }_{n}}(t-n+m)\right| \beta^{-|t+m|} d t \\
& \quad=\sum_{n} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{n} \emptyset_{s_{m-j}}(t+j)-\emptyset_{s^{\prime}{ }_{m-j}}(t+j)\right| \beta^{-|t+m|} d t \\
& \quad \geq \sum_{m} d_{A}\left(s_{n}, s^{\prime}{ }_{n}\right) \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{n} \emptyset_{s_{m-j}}(t+j)-\emptyset_{s^{\prime}{ }_{m-j}}(t+j)\right| \beta^{-|t+m|} d t \\
& \quad \geq \sum_{m} \frac{d_{A}\left(s_{n}, s^{\prime}{ }_{n}\right)}{\beta^{|m|}} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{n} \emptyset_{s_{m-j}}(t+j)-\emptyset_{s^{\prime}{ }_{m-j}}(t+j)\right| \beta^{-|t|} d t
\end{aligned}
$$

Where $J>0$ for all m

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{j} \emptyset_{s_{m-j}}(t+j)-\emptyset_{s^{\prime}{ }_{m-j}}(t+j)\right| \beta^{-|t|} d t \geq J
$$

The following reduction uses the stated third condition in the final strict inequality.

$$
\begin{gathered}
\int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\sum_{j} \emptyset_{s_{m-j}}(t+j)-\emptyset_{s^{\prime}{ }_{m-j}}(t+j)\right| \beta^{-|t|} d t \geq \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\emptyset_{s_{m}}(t)-\emptyset_{s^{\prime}}(t)\right| \beta^{-|t|} d t \\
-\sum_{j \neq 0} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\emptyset_{s_{m-j}}(t-n)-\emptyset_{s^{\prime}{ }_{m-j}}(t-n)\right| \beta^{-|t|} d t \geq \min _{a \neq b} \int_{-\frac{1}{2}}^{\frac{1}{2}}\left|\emptyset_{a}(t)-\emptyset_{b}(t)\right| \beta^{-|t|} d t \\
-\sum_{j \neq 0} \int_{-\frac{1}{2}}^{\frac{1}{2}} \max _{a, b}\left|\emptyset_{a}(t-n)-\emptyset_{b}(t-n)\right| d t>0
\end{gathered}
$$

Hence, there exists $J>0$ such that

$$
d_{F}\left(h(s), h\left(s^{\prime}\right)\right) \geq J \sum_{m} \frac{d A\left(s_{n}, s_{n}^{\prime}\right)}{\beta^{|m|}}=J d_{\Sigma}\left(s, s^{\prime}\right)
$$

The global dynamical system (R, X, Φ) on a locally compact and topological space X, it is often useful to study the continuous extension Φ^{*} of Φ to the one -point compactification X^{*} of X. Although we lose the differential structure of the original system, we can now use compactness arguments to analyze the new $\operatorname{system}\left(\mathrm{R}, X^{*}, \Phi^{*}\right)$. In compact dynamical systems the limit set of any orbit is non-empty, compact and simply connected. Let us remind the definition of a continuous dynamical system. Denote by X, and with ρ a metric function. A dynamical system on X is defined to be a mapping $\emptyset: R \times \mathrm{X} \rightarrow \mathrm{X}$; such that

1. $\emptyset(0, x)=x$ for all x, (Identical property);
2. $\varnothing(t+s, x)=\varnothing(t, \varnothing(s, x))$ for all $\mathrm{x} \in \mathrm{X}$; and $\mathrm{t}, \mathrm{s} \in \mathrm{R}$, (Group property);
$3 . \emptyset(t, x)$ is a continuous function.
One may expect that systems with similar properties can be defined for processes with discontinuities. Present chapter is devoted to the problem of identification of such kind of systems, one of the most interesting and difficult problems for impulsive differential equations.
Theorem (1.1)[3] A function $\emptyset(t) \in p C^{\prime}(T, \theta), \emptyset\left(t_{0}\right)=x_{0}$ is a solution of $\left.\Delta x\right|_{t=\theta_{i}}=J_{i}(x)$. If and only if

$$
\phi(t)=\left\{\begin{array}{l}
x_{0}+\int_{t_{0}}^{t} f(s, \emptyset(s)) d s+\sum_{t_{0} \leq \theta_{i}<t} J_{i}\left(\emptyset\left(\theta_{i}\right)\right), \quad \mathrm{t} \geq t_{0}, \\
x_{0}+\int_{t_{0}}^{t} f(s, \emptyset(s)) d s+\sum_{t_{0} \leq \theta_{i}<t} J_{i}\left(\emptyset\left(\theta_{i}\right)\right), \quad \mathrm{t} \geq t_{0} .
\end{array}\right.
$$

Proof. Necessity. Let $\emptyset(t)$ be a solution of $\left.\Delta x\right|_{t=\theta_{i}}=J_{i}(x)$ on T: Define a function

$$
\psi(t)=\left\{\begin{array}{l}
x_{0}+\int_{t_{0}}^{t} f(s, \emptyset(s)) d s+\sum_{t_{0} \leq \theta_{i}<t} J_{i}\left(\emptyset\left(\theta_{i}\right)\right), \mathrm{t} \geq t_{0}, \\
x_{0}+\int_{t_{0}}^{t} f(s, \emptyset(s)) d s+\sum_{t_{0} \leq \theta_{i}<t} J_{i}\left(\varnothing\left(\theta_{i}\right)\right), \quad \mathrm{t} \geq t_{0}
\end{array}\right.
$$

We shall check that $\psi \in p C^{\prime}(T, \theta)$ and show that functions ψ, \emptyset satisfy. Condition $\emptyset\left(t_{0}\right)=\psi\left(t_{0}\right)$ is obviously true. If $t \notin \theta$ and it is not an end point of T, then differentiating. $\psi(t)$ we find that $\psi^{\prime}=$ $f(t, \emptyset(t))=\emptyset^{\prime}(t), \quad t \geq t_{0}, j \in A$ one has that

$$
\psi\left(\theta_{j}\right)=x_{0}+\int_{t_{0}}^{\theta_{j}} f(s, \emptyset(s)) d s+\sum_{t_{0} \leq \theta_{i}<\theta_{j}} J_{i}\left(\emptyset\left(\theta_{i}\right)\right)
$$

and

$$
\psi\left(\theta_{j}-h\right)=x_{0}+\int_{t_{0}}^{\theta_{j}-h} f(s, \emptyset(s)) d s+\sum_{t_{0} \leq \theta_{i}<\theta_{j}-h} J_{i}\left(\varnothing\left(\theta_{i}\right)\right)
$$

Where $h>0$, we obtain that

$$
\begin{gathered}
\psi^{\prime}-\left(\theta_{j}\right)=\lim _{h \rightarrow 0+} \frac{\psi\left(\theta_{j}-h\right)-\psi\left(\theta_{j}\right)}{h}= \\
\lim _{h \rightarrow 0+} \frac{1}{h}\left[\int_{t_{0}}^{\theta_{j}-h} f(s, \emptyset(s)) d s+\int_{t_{0}}^{\theta_{j}} f(s, \emptyset(s)) d s\right]=f\left(\theta_{j}, \emptyset\left(\theta_{j}\right)\right)=\emptyset^{\prime}-\left(\theta_{j}\right)
\end{gathered}
$$

If α is the right end point of T and $\alpha \in T$ then similarly one can check that $\psi_{\prime_{-}}(\alpha)=\emptyset_{\prime_{-}}(\alpha), j \in A$ then

$$
\begin{gathered}
\left.\Delta \psi\right|_{t=\theta_{j}}=\psi\left(\theta_{j}+\right)-\psi\left(\theta_{j}\right)= \\
{\left[x_{0}+\int_{t_{0}}^{\theta_{j}+} f(s, \phi(s)) d s+\sum_{t_{0} \leq \theta_{i}<\theta_{j}} J_{i}\left(\phi\left(\theta_{i}\right)\right)\right]-} \\
{\left[x_{0}+\int_{t_{0}}^{\theta_{j}} f(s, \varnothing(s)) d s+\sum_{t_{0} \leq \theta_{i}<\theta_{j}} J_{i}\left(\phi\left(\theta_{i}\right)\right)\right]=} \\
J_{i}\left(\varnothing\left(\theta_{i}\right)\right)=\left.\Delta x\right|_{t=\theta_{i}} .
\end{gathered}
$$

Thus, the conditions are verified if $t \geq t_{0}$.
Example (1.1)[4] Let us consider the following system:

$$
\begin{gathered}
x_{1}^{\prime}=-\frac{1}{3} x_{1}-3 x_{2} \\
x_{2}^{\prime}=3 x_{1}-\frac{1}{3} x_{2}
\end{gathered}
$$

$$
\begin{align*}
\Delta x_{1} \mid x \in \Gamma & =\left(2 \cos \frac{\pi}{6}-1\right) x_{1}-2 \sin \frac{\pi}{6} x_{2}, \\
& \Delta x_{2} \left\lvert\, \mathrm{X} \in \Gamma=2 \sin \frac{\pi}{6} x_{1}+\left(2 \cos \frac{\pi}{6}-1\right) x_{2} .\right. \tag{1.3}
\end{align*}
$$

Where $\mathrm{G}=R^{2}$, and $\Gamma=\left[\left(x_{1}, x_{2}\right) \mid x_{1}=x_{2}, 0<x_{1}\right]$. Let us start to check conditions (C1)-(C6). One can easily find that $\bar{\Gamma}=\left[\left(x_{1}, x_{2}\right) \mid \sqrt{3} x_{1}=x_{2}, 0<x_{1}\right], \emptyset(x)=x_{1}-$ $x_{2}, \bar{\varnothing}(x)=\sqrt{3} x_{1}-\mathrm{x}_{2}, f(x)=\left(-\frac{1}{3} x_{1}-3 x_{2}, 3 x_{1}-\frac{1}{3} x_{2}\right), J(x)=\left(2 \cos \frac{\pi}{6} x_{1}-2 \sin \frac{\pi}{6} x_{2}, 2 \sin \frac{\pi}{6} x_{1}+\right.$ $\left.2 \cos \frac{\pi}{6} x_{2}\right)$ Consequently, we have that $\nabla \emptyset(x)=(1,-1) \neq 0$, so, condition $(\mathrm{C} 1)$ is satisfied. It is seen that J , f are continuously differentiable functions and $\operatorname{det}\left[\frac{\partial J(x)}{\partial x}\right]=\operatorname{det}\left(\begin{array}{ll}2 \cos \frac{\pi}{6} & 2 \sin \frac{\pi}{6} \\ 2 \sin \frac{\pi}{6} & 2 \cos \frac{\pi}{6}\end{array}\right)=4\left(\cos ^{2} \frac{\pi}{6}+\sin ^{2} \frac{\pi}{6}\right)=4 \neq 0$, for all x it is also obvious that $\Gamma \cap \bar{\Gamma}=$ \varnothing moreover,
$(\nabla \emptyset(x), f(x))=\left((1,-1),\left(-\frac{1}{3} x_{1}-3 x_{2}, 3 x_{1}-\frac{1}{3} x_{2}\right)\right)=\left(-\frac{10}{3} x_{1}-\frac{8}{3} x_{2}\right) \neq 0$
For all $x \in \Gamma$ the inequality $(\nabla \emptyset(x), f(x)) \neq 0$ for all $\mathrm{x} \in \bar{\Gamma}$ can be shown

Similarly. Thus, all conditions, (C1)-(C6) are fulfilled
Definition (1.2)[5] A solution $\mathrm{x}(\mathrm{t})=\mathrm{x}\left(\mathrm{t}, 0, x_{0}\right)$ of (1.5) is said to be continuable to a set $\mathrm{S} \subset R^{n}$ as time decreases (increases) if there exists a moment $\xi \in R$ such that $\xi \leq 0(\xi \geq 0)$ and $x(\xi) \in s$. The following theorems(1.2) provide sufficient conditions for the continuation of solutions of (1.5)
Lemma (1.1) [5]
There exists constant $c_{3}=c_{3}(m)>0$ such that for all $\Lambda^{1}, \Lambda^{2} \in Z_{m}$,

$$
\left\|H\left(\Lambda^{1}\right)-H\left(\Lambda^{2}\right)\right\|_{c^{(2+\alpha)((2+\alpha) / 2)\left(\mu \times\left[0, T_{m}\right]\right)}} \leq c_{3}\left\|\Lambda^{1}-\Lambda^{2}\right\|_{Z_{m}}
$$

Proof

For $k=1,2$ denote by I^{k} the hypersurface defined by Λ^{k}
Let $h(\mu, \lambda) \in C^{\infty}([-L, L] \times R)$ be function satisfying
$h(\mu, \lambda)=\left\{\begin{array}{rl}\mu, & \text { if }|\mu| \geq \frac{3}{4} L, \\ 0 & , \text { if } \mu=\lambda\end{array} \quad, \quad h_{\mu}(\mu, \lambda)>c>0 \quad\right.$ for same constant \mathbf{c}
Define $Y_{K}=\Omega \times\left[0, T_{m}\right] \rightarrow \Omega \times\left[0, T_{m}\right]$ by

$$
Y_{K}(x, t)=\left\{\begin{array}{c}
x, \text { if dist }\left(x, \Gamma_{0}\right)>\frac{3}{4} L, \\
x^{0}\left(s^{\prime}\right)+\left.h\left(s_{n}, \Lambda^{k}\left(s^{\prime}, t\right)\right) N\left(s^{\prime}\right)\right|_{\left(s^{\prime}, s_{n}\right)=\left(s^{1}(x), \ldots, s^{n}(x)\right),} \text { ifdist }\left(x, \Gamma_{0}\right) \leq \frac{3}{4} L
\end{array}\right.
$$

Clearly, Y_{K} is a $C^{3+\alpha(3+\alpha) / 2}$ diffeomorphism of $\Omega \times\left[0, T_{m}\right]$ which maps Q_{k}^{i} onto $\widehat{Q_{0}^{l}}$. denoting by $x=$ $Y_{k}^{-1}(y, t)$ the inverse function of $y=Y_{K}(x, t) \equiv\left(Y_{k}^{1}, \ldots, Y_{k}^{n}\right), \quad v_{k}(y, t) \equiv u_{k}\left(Y_{k}^{-1}(y, t), t\right)$. Then

$$
\begin{aligned}
& \left\{\begin{array}{c}
\frac{\partial v_{k}}{\partial t}-\sum_{i, j=1}^{n} a_{i, j}^{k} \frac{\partial^{2} v^{\prime}{ }_{k}}{\partial y_{i} \partial y_{j}}+\sum_{i=1}^{n} b_{i}^{k} \frac{\partial v^{\prime}{ }_{k}}{\partial y_{i}}=0 \text { in } \widehat{Q_{0 .}^{l}} \\
u_{1}^{1}=u^{2}
\end{array}\right. \\
& u_{k}^{1}=u_{k}^{2} \quad \text { on } \Gamma_{0} \times\left[0, T_{m}\right], \\
& \widehat{N^{k}} \cdot\left[k^{1} \nabla_{y} u_{k}^{1}-k^{2} \nabla_{y} u_{k}^{2}\right]=l V^{k} \quad \text { on } \Gamma_{0} \times\left[0, T_{m}\right], \\
& v_{k}=g\left(Y_{k}^{-1}(y, t), t\right) \quad \text { on }(\Omega \times\{t=0\}) \cup\left(\partial \Omega \times\left[0, T_{m}\right]\right) \text {, } \\
& \text { Where } v_{k}=v_{k}^{l} \text { on } \widehat{Q_{0}^{l}} \text { and } \\
& \begin{array}{l}
a_{i j}^{k}=a_{i, j}^{k}(y, t)=\left.\nabla_{x} Y_{k}^{i}(x, t) \cdot \nabla_{x} Y_{k}^{j}(x, t)\right|_{x=Y_{k}^{-1}(y, t)^{\prime}} \\
b_{i}^{k}=b_{i}^{k}(y, t)=\frac{\partial Y_{k}^{i}}{\partial t}(x, t)-\left.\nabla_{x} Y_{k}^{i}(x, t)\right|_{x=Y_{k}^{-1}(y, t)^{\prime}} \\
\widehat{N^{k}}=\widehat{N^{k}}(y, t)=\left.\left(N^{k}(x, t) \cdot \nabla_{x}\right) Y_{k}(x, t)\right|_{x=Y_{k}^{-1}(y, t)^{\prime}}
\end{array}
\end{aligned}
$$

$N^{k}(x, t)$ is the unit vector normal to Γ_{t}^{k}, V^{k} is the normal velocity of I^{k}.
Hence, setting $\quad w(y, t)=v_{1}(y, t)-v_{2}(y, t)$, we see that ω satisfies

$$
\left\{\begin{aligned}
& \frac{\partial \omega^{l}}{\partial t}-\sum_{i, j=1}^{n} a_{i j}^{1} \frac{\partial^{2} \omega}{\partial y_{i} \partial y_{j}}+\sum_{i=1}^{n} b_{i}^{1} \frac{\partial \omega^{l}}{\partial y_{i}}=\left.\sum_{i, j=1}^{n}\left[a_{i j}^{1}-a_{i j}^{2}\right] \frac{\partial^{2} v_{2}^{l}}{\partial y_{i} \partial y_{j}}-\sum_{i=1}^{n}\left[b_{i}^{1}-b_{i}^{2}\right] \frac{\partial v_{2}^{l}}{\partial y_{i}}\right] \equiv \emptyset \\
& \text { in } Q_{0}^{l}, \\
& \omega^{1}=\omega^{2} \quad, \text { on } \Gamma_{0} \times\left[0, T_{m}\right], \\
& \widehat{N^{1}} \cdot\left[k^{1} \nabla_{y} \omega^{1}-k^{2} \nabla_{y} \omega^{2}\right]=l\left[V^{1}-V^{2}\right]+\left(\widehat{N^{1}}-\widehat{N^{2}}\right) \cdot\left(k^{1} \nabla_{y} v_{2}^{1}-k^{2} \nabla_{y} v_{2}^{2}\right) \\
& \equiv \Psi, \text { on } \Gamma_{0} \times\left[0, T_{m}\right], \\
& \omega=0, \text { on }(\Omega \times\{t=0\}) \cup\left(\partial \Omega \times\left[0, T_{m}\right]\right),
\end{aligned}\right.
$$

Thus, we can now reflect ω^{2} across $\Gamma_{0} \times\left[0, T_{m}\right]$

$$
\|\omega\|_{c^{2+\alpha,(2+\alpha) / 2}} \widehat{Q_{0}^{1}}+\|\omega\|_{c^{2+\alpha,(2+\alpha) / 2}} \widehat{Q_{0}^{2}} \leq C\left\{\|\omega\|_{c^{\alpha, \alpha / 2}} \widehat{Q_{0}^{1}}+\|\omega\|_{c^{\alpha, \alpha / 2}} \widehat{Q_{0}^{2}}+\|\Psi\|_{c^{1+\alpha,(1+\alpha) / 2}\left(\Gamma_{0} \times\left[0, T_{m}\right]\right)}\right\},
$$

Where C depends on the $c^{\alpha, \alpha / 2}$ norm of $a_{i j}^{k}, b_{i}^{k}$ or, equivalently, on . $\|\varnothing\|_{c^{\alpha, \alpha / 2}}\left(\widehat{Q_{0}^{1}}\right)+$

$$
\begin{array}{cl}
\|\varnothing\|_{C^{\alpha, \alpha / 2}}\left(\widehat{Q}_{0}^{2}\right) C(m)\left\{\sum_{i, j=1}^{n} \| a_{i j}^{1}-\right. & a_{i j}^{2}\left\|_{C^{\alpha, \alpha / 2(\Omega \times[0, T m)]}}+\sum_{i=1}^{n}\right\|\left[b_{i}^{1}-b_{i}^{2}\right] \|_{C^{\alpha, \alpha / 2\left(\Omega \times\left[0, T_{m}\right)\right]}} \leq \\
C(m)\left\|\Lambda^{1}-\Lambda^{2}\right\|_{C^{3+\alpha,(3+\alpha) / 2}}, &
\end{array}
$$

Definition (1.3)[6] .The space $C^{\text {weak }}\left([0, T] ; H^{s}(\Omega)\right)$ denotes continuity on the interval $[0, T]$ with values in the weak topology of H^{s}. In other words, for any fixed $\emptyset \in H^{s},(\varnothing, u(t))_{s}$ is a continuous scalar function on $[0, T]$. The inner product of H^{s} is given by

$$
(u, v)_{s}=\sum_{\alpha \leq s} \int D^{\alpha} u \cdot D^{\alpha} v d x .
$$

The Hilbert spaces we will be working on for most of the time is:

$$
\begin{equation*}
V^{m}=\left\{(u, v) \in H^{m}(\Omega) \times H^{m}(\Omega)\right\} \tag{1.4}
\end{equation*}
$$

We consider the following regularization of

$$
\begin{align*}
& \frac{\partial A^{\epsilon}}{\partial t}=\eta J_{\epsilon}^{2} \Delta A^{\epsilon}-A^{\epsilon}+\rho^{\epsilon} A^{\epsilon}+A^{0} \tag{1.5a}\\
& \frac{\partial \rho^{\epsilon}}{\partial t}=J_{\epsilon}\left(J_{\epsilon} \Delta \rho^{\epsilon}\right)-2 J_{\epsilon}\left[\nabla \cdot\left(\frac{\partial \rho^{\epsilon}}{\partial A^{\epsilon}} J_{\epsilon} \nabla A^{\epsilon}\right)-\rho^{\epsilon} A^{\epsilon}+\bar{B} .\right] \tag{1.5b}
\end{align*}
$$

The Banach space $V^{2}, m=2$ in(10)with norm $\|(A, \rho)\|_{V^{2}}=\|A\|_{2}+\|\rho\|_{2}$.
Theorem (1.2)[6] (Local existence of solutions to the regularized residential burglary Model) For any $\epsilon>0$ and initial conditions $\left(A_{0}(x), \rho_{0}(x)\right) \in V^{2}$ such that $A_{0}(x)>0$ there exists a solution, $\left(A^{\epsilon}, \rho^{\epsilon}\right) \in$ $C^{1}\left(\left[0, T_{\epsilon}\right], V^{2}\right)$, for some $T_{\epsilon}>0$ to the regularized system (1.5). Furthermore, the following energy estimate is satisfied:

$$
\frac{d}{d t}\left\|A^{\epsilon}, \rho^{\epsilon}\right\| V^{2} \leq c_{3}\left\|A^{\epsilon}, \rho^{\epsilon}\right\|^{3} V^{2}+c_{2}\left\|A^{\epsilon}, \rho^{\epsilon}\right\|^{2} V^{2}+c_{1}\left\|A^{\epsilon}, \rho^{\epsilon}\right\| V^{2}
$$

Where c_{1}, c_{2} and c_{3} are constants that depend only on $\frac{1}{A^{0}}, \epsilon$ and η

Proof :

Define the map $F^{\epsilon}=\left[F_{1}^{\epsilon}, F_{2}^{\epsilon}\right]: 0 \subseteq V^{2} \rightarrow X, 0$ the set such that F^{ϵ} maps 0 to V^{2}, i.e $X=V^{2}$ define the function by:

$$
\begin{gathered}
F_{1}^{\epsilon}\left(A^{\epsilon}, \rho^{\epsilon}\right)=\eta J_{\epsilon}^{2} \Delta A^{\epsilon}-A^{\epsilon}+\rho^{\epsilon} A^{\epsilon}+A^{0}, \\
F_{2}^{\epsilon}\left(A^{\epsilon}, \rho^{\epsilon}\right)=J_{\epsilon}^{2} \Delta \rho^{\epsilon}-2 J_{\epsilon}\left[\nabla \cdot\left(\frac{\rho^{\epsilon}}{A^{\epsilon}} J_{\epsilon} \nabla A^{\epsilon}\right)\right]-\rho^{\epsilon} A^{\epsilon}+\bar{B} .
\end{gathered}
$$

Hence, if $v^{\epsilon}=\left(A^{\epsilon}, \rho^{\epsilon}\right) \in V^{2}$ the original model reduces to an ODE in V^{2}

$$
\frac{d v^{\epsilon}}{d t}=F^{\epsilon}(v), \quad v^{\epsilon}(0)=\left(A_{0}(x), \rho_{0}(x)\right) .
$$

Let $v_{i}^{\epsilon}=\left(A_{i}^{\epsilon}, \rho_{i}^{\epsilon}\right) \in V^{2} \quad(i=1,2)$ we drop ϵ for notational convenience. By definition of the V^{2}-norm and F we have:

$$
\left\|F\left(v_{1}\right)-F\left(v_{2}\right)\right\|_{V^{2}}=\left\|F_{1}\left(v_{1}\right)-F_{1}\left(v_{2}\right)\right\|_{2}+\left\|F_{2}\left(v_{1}\right)-F_{2}\left(v_{2}\right)\right\|_{2} .
$$

By substituting (1.3) above and using $\forall v \in H^{m}(\Omega), \gamma, k \in Z^{+} \cup 0$, and $0 \leq \epsilon \leq 1:\left\|J_{\epsilon} v\right\|_{m+\gamma} \leq \frac{C_{m \gamma}}{\epsilon \gamma}\|v\|_{m}$
$\left|J_{\epsilon} D^{k} v\right|_{\infty} \leq \frac{C_{k}}{\epsilon^{N / 2+\gamma-k}}\|v\|_{k}$ and $\forall m \in Z^{+} \cup 0 \quad$ there exists $C>0$ such that for all $u, v \in L^{\infty}(\Omega) \cap$ $H^{m}(\Omega)$:

$$
\|u v\|_{m} \leq c\left\{|u|_{\infty}\left\|D^{m} v\right\|_{0}+\left\|D^{m} v\right\|_{0}|v|_{\infty}\right\}, \sum_{0 \leq|\alpha| \leq m}\left\|D^{\alpha}(u v)-u D^{\alpha} v\right\|_{0} \leq
$$

$$
c\left\{|\nabla u|_{\infty}\left\|D^{m-1}\right\|_{0}+\left\|D^{m} v\right\|_{0}|v|_{\infty}\right\}
$$

We obtain a suitable bound for F_{1}. Initially we have:
$\left\|F_{1}\left(v_{1}\right)-F_{1}\left(v_{2}\right)\right\|_{2} \leq \eta\left\|J_{\epsilon}^{2} \Delta\left(A_{1}-A_{2}\right)\right\|_{2}+\left\|A_{1}-A_{2}\right\|_{2}+\left\|\rho_{1} A_{1}-A_{2} \rho_{2}\right\|_{2}$.
Using
$\forall s>\frac{N}{2}, H^{m}(\Omega)$ is a Banach algebra. That is, there exists $c>0$ such that for all $\|u v\|_{s} \leq C\|u\|_{s}\|v\|_{s}$. by

$$
\begin{equation*}
\left\|\rho_{1} A_{1}-A_{2} \rho_{2}\right\|_{2} \leq\left\|\rho_{2}\right\|_{2}\left\|A_{1}-A_{2}\right\|_{2}+\left\|A_{2}\right\|_{2}\left\|\rho_{1}-\rho_{2}\right\|_{2} . \tag{1.6}
\end{equation*}
$$

Using (1.6) we easily obtain the final estimate for F_{1} :

$$
\begin{equation*}
\left\|F_{1}\left(v_{1}\right)-F_{1}\left(v_{2}\right)\right\|_{2} \leq\left(\frac{\eta}{\epsilon^{2}}+1+\left\|\rho_{2}\right\|_{2}\right)\left\|A_{1}-A_{2}\right\|_{2}+\left\|A_{2}\right\|_{2}\left\|\rho_{1}-\rho_{2}\right\|_{2} \tag{1.7}
\end{equation*}
$$

If we define the open set $\left\{(u, v) \in V^{2}:\left|\frac{1}{u}\right|_{\infty}<K_{1},\left\|u_{2}\right\|_{2}<L_{1},\left\|v_{2}\right\|_{2}<L_{2}\right\}$
If $v_{1}, v_{2} \in 0$ then
$\left\|F_{1}\left(v_{1}\right)-F_{1}\left(v_{2}\right)\right\|_{2} \leq \tilde{C}_{1}\left\|A_{1}-A_{2}\right\|_{2}+\tilde{C}_{2}\left\|\rho_{1}-\rho_{2}\right\|_{2}$,
Where

$$
\begin{gathered}
\tilde{C}_{1}=\frac{K_{1}}{\epsilon^{3}}\left(\left\|\rho_{2}\right\|_{2}+K_{1}\left\|A_{1}\right\|_{1}\left|\rho_{1}\right|_{\infty}+K_{1}\left\|A_{2}\right\|_{2}\left\|\rho_{2}\right\|_{2}+K_{1}^{2}\left\|A_{2}\right\|_{2}^{2}\left\|\rho_{2}\right\|_{2}+\right. \\
\left.\frac{K_{1}^{3}}{\epsilon}\left\|A_{1}\right\|_{1}\left\|A_{2}\right\|_{2}\left\|\rho_{2}\right\|_{2}+\frac{K_{1}}{\epsilon^{2}}\left|\rho_{1}\right|_{\infty}+\left\|\rho_{2}\right\|_{2}\right), \\
\widetilde{C}_{2}=\frac{1}{\epsilon^{2}}+\left\|A_{1}\right\|_{2}+\frac{C_{1}^{2}}{\epsilon^{3}}\left\|A_{2}\right\|_{2}\left\|A_{1}\right\|_{2}\left(1+K\left\|A_{2}\right\|_{1}+K_{1}\left\|A_{1}\right\|_{1}\right) .
\end{gathered}
$$

\tilde{C}_{1} and \tilde{C}_{2} depend only on $\left\|A_{i}\right\|_{2},\left\|\rho_{i}\right\|_{2}, \epsilon$ and K_{1} for $i=1,2$. Combining (1.7), and (1.8) gives

$$
\left\|F_{1}\left(v_{1}\right)-F_{1}\left(v_{2}\right)\right\|_{V^{2}} \leq C\left(\eta, L_{1}, L_{1}, K_{1}, \epsilon\right)\left\|A_{1}-A_{2}\right\|_{2}+C\left(L_{1}, L_{1}, K_{1}, \epsilon\right)\left\|\rho_{1}-\rho_{2}\right\|_{2}
$$

1.1 Linear Homogeneous and Nonhomogeneous Systems

We start discussion of linear impulsive systems with the following differential Equation:

$$
\begin{gathered}
x^{\prime}=A(t) x . \\
\left.\Delta x\right|_{t=\theta_{i}}=B_{i} x
\end{gathered}
$$

Where $(t, x) \in R \times R^{n}, \theta_{i}, i \in Z$ is a B-sequence, such that $\left|\theta_{i}\right| \rightarrow \infty$ as $|i| \rightarrow \infty$. We suppose that the entries of $\mathrm{n} \times \mathrm{n}$ matrix $\mathrm{A}(\mathrm{t})$ are from $\mathrm{p} c(R, \theta)$, real valued $\mathrm{n} \times \mathrm{n}$ matrices $B_{i}, \mathrm{I} \in Z$, satisfy

$$
\operatorname{Det}\left(\tau+B_{i}\right) \neq 0,
$$

where τ is the identical $\mathrm{n} \times \mathrm{n}$ matrix?

1.2 Laplace transform Method solution of Fractional ordinary Differential Equations

In 1819 Lacroix developed the formula for the $n^{t h}$ derivative $f(t)=x^{m}$, where m is a positive integer. then

$$
D^{n} y=\frac{m!}{(m-n)!} x^{(m-n)},
$$

Replacement of factorial symbol by the gamma function gives:

$$
\begin{equation*}
D^{n} y=\frac{\Gamma(m+1)}{\Gamma(m-n+1)} x^{m-n} \tag{1.9}
\end{equation*}
$$

Now(1.29)is defined for either n integers, or not (arbitrary number) (Debnath and Bhatta.2009). Liouville's first formula:
For any integer n, we have

$$
\begin{equation*}
D^{n} e^{a x}=a^{n} e^{a x} \tag{1.10}
\end{equation*}
$$

Liouville replaced n by an arbitrary number α (rational, irrational or complex), it is clear that the R.H.S of (1.10) is well defined; in this case, he obtained the following formula.

$$
D^{n} e^{a x}=a^{n} e^{a x}
$$

This formula is called first Liouville's formula. In series expansion of $f(x)$
, Liouville formula is given by

$$
\begin{equation*}
D^{a} f(x)=\sum_{n=0}^{\infty} c_{n} a_{n}^{a} e^{a_{n} x} \tag{1.11}
\end{equation*}
$$

Liouville's second formula:
Liouville formulated another definition (second form) of a fractional derivative based on the gamma function to extend Lacroix's formula (Loke Nath and Bhatt a, 2009).

$$
\begin{equation*}
D^{a} x^{-\beta}=\frac{(-1)^{\alpha}}{\Gamma(\beta)} \Gamma(\beta+\alpha) x^{-\beta-\alpha} \tag{1.12}
\end{equation*}
$$

Formula (1.11), (1.12) is called the Liouville's second definition of fractional derivative. We note that the Liouville derivative of a constant (when $\beta=0$) is zero, but the derivative of a constant function to Lacroix's formula is

$$
\begin{equation*}
D^{a} 1=\frac{x^{-\alpha}}{\Gamma(1-\alpha)} \neq 0 \tag{1.13}
\end{equation*}
$$

This led to a discrepancy between the two definitions of fractional derivative. But mathematicians prefer Liouville's definition. The idea of fractional derivatives or fractional integral can be described in different ways. Now by considering a linear homogenous $n^{\text {th }}$-order ordinary differential equation (initial value problem),

$$
D^{n} y=0, y^{(k)}(a)=o, \quad 0 \leq k \leq n-1
$$

The solution is the fundamental set $\left\{1, x, x^{2} \ldots \ldots \ldots, x^{n-1}\right\}$,

$$
\therefore y=\sum_{n=0}^{\infty} c_{r} x^{r}
$$

Now we must derive the Riemann-Liouville formula, that is by seeking the solution of the following in homogeneous ordinary differential equation

$$
D^{n} y=f(x), \quad D^{(k)}(0)=0, \quad \mathrm{k}=0,1,2, \ldots \ldots \ldots
$$

To get the solution of the above problem we use the Laplace transform method as follows,

$$
£ D^{n}\{y\}=£\{f(x)\} \Rightarrow \bar{y}(s)=s^{-n} \bar{f}(s), \quad \text { where } \quad \bar{y}=£[y] \text { and } \bar{f}=£[f]
$$

$\therefore y(x)=£^{-1} s^{-n} \bar{f}(\mathrm{~s})$. By using the convolution theorem, we get the solution as follows:

$$
\begin{equation*}
y(x)=\frac{1}{\Gamma(n)} \int_{a}^{x}(x-t)^{n-1} f(t) d t \tag{1.14}
\end{equation*}
$$

Formula $\left(D^{n} y=\frac{m!}{(m-n)!} x^{(m-n)}\right.$) is called Riemann-Liouville formula. Replacement of n by a number α gives the Riemann-Liouville fractional integral.
$D^{-\alpha} f(x) \equiv a^{D^{-\alpha}} x f(x)=\frac{1}{\Gamma(n)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t$, Re $\alpha>0$
Where $a^{D^{-\alpha}} x$ (or $D^{-\alpha}$) is called the Riemann Liouville integral operator
(Debnath and D Bhatta.2009; carl and Tom 2000). if $a=0$ in the resulting formula is called Riemann fractional integral and if $\mathrm{a}=-\infty$, is called Liouville fractional integral.The fractional derivative is given by replacing α by $-\alpha$ in The Riemann fractional integral is given by,

$$
\begin{equation*}
D^{-\alpha} f(x) \equiv 0^{D^{-\alpha}} x f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, \operatorname{Re} \alpha>0 \tag{1.15}
\end{equation*}
$$

The formula (1.12) is of convolution type, then its Laplace transform is given by
$\left.£\left[D^{-\alpha} f(x)\right]\right]=\frac{1}{\Gamma(\alpha)} £\left[\left(x^{\alpha-1}\right) * f(x)=\frac{1}{\Gamma(\alpha)} \frac{\Gamma(\alpha)}{s^{a}} \overline{f(s)}=\frac{\overline{f(s)}}{s^{a}}\right.$
The Laplace transform of fractional derivative of order α is given by Lokenath 2003:

$$
£\left\{D^{a} x(t)\right\}=s^{a} \bar{x}(\mathrm{~s})-\sum_{k=0}^{n-1} s^{k}\left[D^{(\alpha-k-1)} x(0)\right]=s^{a} \bar{x}(\mathrm{~s})-\sum_{k=0}^{n-1} c_{k} s^{k}
$$

Where $\quad(n-1)<\alpha \leq n$ and $c_{k}=D^{(\alpha-k-1)} x(0)$.
The special function of Mintage- Leffler function is defined by Haubold et al. (Humboldt et al 2009):

$$
\begin{equation*}
E_{\alpha, \beta}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+\beta)} \tag{1.17}
\end{equation*}
$$

Where, $\beta \in \emptyset, \operatorname{Re}(\alpha), \operatorname{Re}(\beta)>0$. If $\beta=1$ then we have,

$$
E_{\alpha, 1}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(\alpha k+1)}
$$

Some examples:

(i) $E_{0,1}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(1)}=\sum_{k=0}^{\infty} z^{k}$
(ii) $E_{1,1}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{((k+1)}=e^{z}$
(iii) $E_{1,2}(\mathrm{z})=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k+2)}=\frac{e^{z}-1}{z}$
$(i v) E_{1,0}(z)=\sum_{k=0}^{\infty} \frac{z^{k}}{\Gamma(k)}=z e^{z}$

The function $\mathrm{E}(\mathrm{t}, \alpha, a)$ is used to solve differential equations of fractional order which is defined by:

$$
\begin{equation*}
E(t, \alpha, a)=t^{\alpha} \sum_{k=0}^{\infty} \frac{(a t)^{k}}{\Gamma(k+\alpha+1)}=t^{\alpha} E_{1, \alpha+1}(a t) \tag{1.18}
\end{equation*}
$$

Theorem(1.3)[8]:

$$
\mathrm{E}(\mathrm{t}, \alpha, a)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \xi^{\alpha-1} e^{a(t-\xi)} d \xi
$$

Proof: We start by the integral in the left-hand side of

$$
\begin{gathered}
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \xi^{\alpha-1} e^{a(t-\xi)} d \xi=\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \xi^{\alpha-1}\left(\sum_{k=0}^{\infty} \frac{a^{k}(t-\xi)^{k}}{k!}\right) d \xi=\frac{1}{\Gamma(\alpha)} \\
\sum_{k=0}^{\infty}\left[a^{k} t^{k}\left(\int_{0}^{t} \xi^{\alpha-1}\left(1-\frac{\xi}{t}\right)^{k}\right) d \xi\right]=\frac{1}{\Gamma(\alpha)} \sum_{k=0}^{\infty}\left[\frac{a^{k} t^{k}}{k!} I\right]
\end{gathered}
$$

To complete the proof, we have to calculate the integral given by I, where

$$
\mathrm{I}=\int_{0}^{t} \xi^{\alpha-1}\left(1-\frac{\xi}{t}\right)^{k} d \xi
$$

Let $u=\frac{\xi}{t}$, then $d \xi=t d u$, as $\xi=0$ then $u=0$, and as $\xi=t$ then $u=1$
by substituting into (iii) we get

$$
\begin{gathered}
\mathrm{I}=\int_{o}^{1} t^{\alpha-1} u^{\alpha-1}(1-u)^{k} t d u=t^{\alpha} \int_{0}^{1} u^{\alpha-1}(1-u)^{k} d u=t^{\alpha} B(\alpha, k+1)= \\
\frac{t^{\alpha} \Gamma(\alpha) \Gamma(k+1)}{\Gamma(k+\alpha+1)}
\end{gathered}
$$

Substituting of (ii) into ($D^{n} y=\frac{m!}{(m-n)!} x^{(m-n)}$) yields

$$
\frac{1}{\Gamma(\alpha)} \int_{0}^{t} \xi^{\alpha-1} e^{a(t-\xi)} d \xi=\frac{1}{\Gamma(\alpha)} \sum_{k=0}^{\infty} \frac{a^{k} t^{k}}{k!} \frac{t^{\alpha} \Gamma(\alpha) k!}{\Gamma(k+\alpha+1)}=t^{\alpha} \sum_{k=0}^{\infty} \frac{(a t)^{k}}{\Gamma(k+\alpha+1)} t^{\alpha} E_{1, \alpha+1}(a t)=E(t, \alpha, a)
$$

1.3 Fractional ordinary differential equations:

The general form of fractional linear ordinary differential equations of order (n, q) is given by
$\left[D^{\alpha n}+a_{n-1} D^{(n-1) \alpha}+\cdots+a_{0} D^{0}\right] x(t)=h(t), \quad t \geq 0$
Where $\alpha=\frac{1}{q}$. If $q=1$, then $\alpha=1$
and equation (1.19) is a simple ordinary differential equation
Of order n. symbolically equation (1.39) can be expressed as

$$
\begin{equation*}
f\left(D^{\alpha}\right) x(t)=h(t) \tag{1.20}
\end{equation*}
$$

Where $D^{\alpha} \equiv\left[D^{\alpha n}+a_{n-1} D^{(n-1) \alpha}+\cdots+a_{0} D^{0}\right]$ and $a_{0}, a_{1}, \ldots \ldots \ldots a_{n-1}$ are functions of the independent variable t .
Assume that the coefficients $a_{0}, a_{1}, \ldots \ldots \ldots a_{n-1}$ are functions of the equation (1.43).They applying the Laplace transformation with respect to both sides of (1.43) we obtain,
$£\left\{\left[D^{\alpha n}+a_{n-1} D^{(n-1) \alpha}+\cdots+a_{0} D^{0}\right] x(t)\right\}=£\{h(t)\} \quad \Rightarrow £\left\{\left[D^{\alpha n}\right] x(t)\right\}+a_{n-1} £\left\{\left[D^{(n-1) \alpha}\right] x(t)\right\}+\cdots+$ $a_{0} £\left\{\left[D^{0}\right] x(t) \Rightarrow\left[s^{n \alpha} \bar{x}(s)-\sum_{k=1}^{n} c_{k} s^{n k}\right]+a_{n-1}\left[s^{\alpha(n-1)} \bar{x}(s)-\sum_{k=1}^{n-1} c_{k-1} s^{k}\right]+\cdots+a_{1} s^{\alpha} \bar{x}(s)+\right.$ $a_{0} \bar{x}(s)=\bar{h}(s) \Rightarrow\left[s^{\alpha n}+a_{n-1} s^{\alpha(n-1)}+\cdots+a_{1} s^{\alpha}+a_{0}\right] \bar{x}(s)=\varnothing(s) \Rightarrow$

$$
\begin{equation*}
\bar{x}(s)=\frac{\emptyset(s)}{\left[s^{\alpha n}+a_{n-1} s^{\alpha(n-1)}+\cdots+a_{1} s^{\alpha}+a_{0}\right]} \tag{1.21}
\end{equation*}
$$

If the equation of order $(\mathrm{n}, 2)$, then $\alpha=\frac{1}{2}$, and formula (1.44) becomes

$$
\begin{equation*}
\bar{x}(s)=\frac{\emptyset(s)}{\left[s^{\frac{n}{2}}+a_{n-1} s^{\frac{(n-1)}{2}}+\cdots+a_{1} s^{\frac{1}{2}}+a_{0}\right]} \tag{1.22}
\end{equation*}
$$

Assume that the R.H.S of (1.45)will be factorized and expressed as,

$$
\begin{gather*}
\bar{x}(s)=\sum_{r=1}^{k} \frac{\emptyset_{r}(s)}{\left(\sqrt{s}-\beta_{r}\right)^{m_{r}}}=\sum_{r=1}^{k} \frac{\emptyset_{r}(s)\left(\sqrt{s}-\beta_{r}\right)^{m_{r}}}{\left(s-\beta_{r}^{2}\right)^{m_{r}}}=\sum_{r=1}^{k} \sum_{i=0}^{m_{r}} \frac{\emptyset_{r}(s)\binom{m_{i}}{i}(\sqrt{s})^{m_{r}}\left(\beta_{r}\right)^{m_{r}-i}}{\left(s-\beta_{r}{ }^{2}\right)^{m_{r}}} \\
=\sum_{r=1}^{k} \sum_{i=0}^{m_{r}} \frac{\omega_{i}}{s^{\gamma_{i}\left(s-\beta_{r}{ }^{2}\right)^{m_{r}}}} \tag{1.23}
\end{gather*}
$$

Where

$$
m_{1}+m_{2}+\cdots+m_{k}=n, \omega_{i}=\mathrm{const} \text { and } s^{\gamma_{i}}=\left(\emptyset_{r}(s)(\sqrt{s})^{m_{r}}\right)^{-1}
$$

Example (1.2) [9]: consider the following fractional ordinary differential equation with variable coefficients
$\mathrm{t} D^{\alpha}(t)+D^{\alpha-1} x(t)+t x(t)=0, \quad x(0)=1, \quad 1<\alpha \leq 2$
The application of Laplace transform gives

$$
\begin{gathered}
-\frac{d}{d s}=£\left[D^{\alpha}(t)\right]+£\left[D^{\alpha-1} x(t)\right]+£[t x(t)]=0 \quad \Rightarrow \\
-\frac{d}{d s}=\left[s^{\alpha} \bar{x}(s)-\sum_{k=0}^{1} s^{k} D^{\alpha-k-1} x(0)\right]+\left[s^{\alpha-1} \bar{x}(s)-\sum_{k=0}^{0} s^{k} D^{\alpha-k-2} x(0)\right]
\end{gathered}
$$

$-\frac{d \bar{x}(s)}{d s}=0 \quad \Rightarrow$
$-\frac{d}{d s}=\left[s^{\alpha} \bar{x}(s)-D^{\alpha-1} x(0)-s D^{\alpha-2} x(0)\right]+\left[s^{\alpha-1} \bar{x}(s)-D^{\alpha-2} x(0)\right]-\frac{d \bar{x}(s)}{d s}=0 \quad \Rightarrow$
$-s^{\alpha} \frac{d \bar{x}(s)}{d s}-\alpha s^{\alpha-1} \bar{x}(s)+D^{\alpha-2} x(0)+s^{\alpha-1} \bar{x}(s)-D^{\alpha-2} x(0)-\frac{d \bar{x}(s)}{d s}=0 \quad \Rightarrow\left(1+s^{\alpha}\right) \frac{d \bar{x}(s)}{d s}=$ $(1-\alpha) s^{\alpha-1} \bar{x}(s)$
$\frac{d \bar{x}(s)}{\bar{x}(s)}=\frac{(\alpha-1) s^{\alpha-1}}{\left(1+s^{\alpha}\right)} d s \Rightarrow \ln \bar{x}(s)=\frac{(1-\alpha)}{\alpha} \ln \left(1+s^{\alpha}\right)+\ln c$
$\therefore x(t)=£^{-1}\left[c\left(1+s^{\alpha}\right)^{\frac{(1-\alpha)}{\alpha}}\right]$
As special case takes $\alpha=2$, then equation (1.25)becomes
$\mathrm{t} D^{2}(t)+D x(t)+t x(t)=0, \quad x(0)=1$, then from (1.48) we have
$x(t)=£^{-1}\left[\frac{c}{\sqrt{\left(1+s^{2}\right)}}\right]=c J_{0}(t)$.

Definition (1.4) [10] (Lyapunov Stability.) $\bar{x}(t)$ is said to be stable (or Lyapunov stable) if, given $\varepsilon>0$, there exists $a \delta=\delta(\varepsilon)>0$ such that, for any other solution, $y(t)$, of (1.48) satisfying $\left|\bar{x}\left(t_{0}\right)-y\left(t_{0}\right)\right|<\delta$ (where $|$. is a norm on R^{n}), then $|\bar{x}(t)-y(t)|<\varepsilon$ for $t>t_{0}, t_{0} \in \mathrm{R}$. We remark that a solution which is not stable is said to be unstable.

1.4 Stability

An equilibrium solution, i.e., $\bar{x}(t)=\bar{x}$, then $D x(\mathrm{t}, \mathrm{s}) f(\bar{x})$ is a matrix of (1.47) with constant entries, and the solution through the point

$$
y^{0} \in R^{n}
$$

of $t=0$ can immediately be written as

$$
y(t)=e^{\operatorname{Df}(\bar{x}(t))} y^{0} .
$$

Thus, $\mathrm{y}(\mathrm{t})$ is asymptotically stable if all Eigen values of $D f(\bar{x})$ have negative real part
Example (1.3) [11] (Stability and Eigen values of Time-Dependent Jacobians). For a general time, dependent solution $\bar{x}(t)$ it might be tempting to infer stability properties of this solution from the Eigen values of the Jacobian $D f(\bar{x}(t))$. The following example from Hale [1980] shows this can lead to wrong answers. Consider the following linear vector field with time-periodic coefficients

$$
\binom{\dot{x}_{1}}{\dot{x}_{2}}=\mathrm{A}(\mathrm{t})\binom{x_{1}}{\mathrm{x}_{2}}
$$

Where

$$
\mathrm{A}(\mathrm{t})=\left(\begin{array}{cc}
-1+\frac{3}{2} \cos ^{2} t & 1-\frac{3}{2} \cos t \sin t \\
-1-\frac{3}{2} \cos t \sin t & -1-\frac{3}{2} \sin ^{2} t
\end{array}\right)
$$

$=\left(-1+\frac{3}{2} \cos ^{2} t\right)\left(-1-\frac{3}{2} \sin ^{2} t\right)-\left(1-\frac{3}{2} \cos t \sin t\right)\left(-1-\frac{3}{2} \cos t \sin t\right)=\left(1+\frac{3}{2} \sin ^{2} t-\frac{3}{2} \cos ^{2} t-\right.$ $\left.\frac{9}{4} \cos ^{2} \operatorname{tsin}^{2} t\right)-1-\frac{3}{2}+\frac{3}{2}+\frac{9}{4}=\left(1-\frac{3}{2}\left(\cos ^{2} t-\sin ^{2} t\right)-\frac{9}{4} \cos ^{2} \operatorname{tsin}^{2} t\right)-1+\frac{9}{4}$

The Eigen values of $A(t)$ are found to be independent of t and are given by

$$
\begin{gathered}
\lambda_{1}(\mathrm{t})=\frac{-1+i \sqrt{7}}{4}, \quad \lambda_{2}=\frac{-1-i \sqrt{7}}{4} \\
V_{1}(t)=\binom{-\cos t}{\sin t} e^{\frac{t}{2}} \quad V_{2}=\binom{\sin t}{\cos t} e^{-t}
\end{gathered}
$$

Hence, the solutions are unstable and of saddle type, a conclusion that does not
follow from the eigen values of $A(t)$.
$\left\{\ldots, A^{-n} y_{0}, \ldots, A^{-1} y_{0}, y_{0}, A y_{0}, \ldots, A^{n} y_{0}, \ldots\right\}$ or the infinite sequence (if the map is $C^{r}, r \geq 1$, but noninvertible) $\left\{y_{0}, A y_{0}, \ldots, A^{n} y_{0}\right\}$.
Recall that when the nominal feedback system is internally stable, the nominal performance condition is $\left\|W_{1} S\right\|_{\infty}<1$ and the robust stability condition is $\left\|W_{2} T\right\|_{\infty}<1$. If P is perturbed to $\left(1+\Delta W_{2}\right) P, S$ is perturbed to

$$
\frac{1}{1-\left(1+\Delta W_{2}\right) L}=\frac{S}{1+\Delta W_{2} T}
$$

Clearly, the robust performance condition should therefore be

$$
\left\|W_{2} T\right\|_{\infty}<1 \text { and }\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}<1, \quad \forall \Delta .
$$

Here Δ must be allowable. The next theorem gives a test for robust performance in terms of the function

$$
s \mapsto\left|W_{1}(s) S(s)\right|+\left|W_{2}(s) T(s)\right| .
$$

Which is denoted $\left|W_{1} S\right|+\left|W_{2} T\right|$.
Theorem (1.4) [7] A necessary and sufficient condition for robust performance is

$$
\begin{equation*}
\left\|\left|W_{1} S\right|+\left|W_{2} T\right|\right\|_{\infty}<1 . \tag{1.26}
\end{equation*}
$$

$\operatorname{Proof}(\Leftarrow)$ Assume (1.50), or equivalently

$$
\begin{equation*}
\left\|W_{2} T\right\|_{\infty} \text { and }\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}<1 . \tag{1.27}
\end{equation*}
$$

Fix Δ. In what follows, functions are evaluated at an arbitrary point $j \omega$, but this is suppressed to simplify notation. We have

$$
1=\left|1+\Delta W_{2} T-\Delta W_{2} T\right| \leq\left|1+\Delta W_{2} T\right|+\left|W_{2} T\right|
$$

and therefore

$$
1-\left|W_{2} T\right| \leq\left|1+\Delta W_{2} T\right|
$$

This implies that

$$
\left\|\frac{W_{1} S}{1-\left|W_{2} T\right|}\right\|_{\infty} \geq\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}
$$

This and (1.28) yield

$$
\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}<1
$$

(\Rightarrow) Assume that

$$
\begin{equation*}
\left\|W_{2} T\right\|_{\infty}<1 \text { and }\left\|\frac{W_{1} S}{1-\left|W_{2} T\right|}\right\|_{\infty}<1, \quad \forall \Delta \tag{1.28}
\end{equation*}
$$

Pick a frequency ω where

$$
\frac{\left|W_{1} S\right|}{1-\left|W_{2} T\right|}
$$

is maximum. Now pick Δ so that

$$
1-\left|W_{2} T\right|=\left|1+\Delta W_{2} T\right|
$$

The idea here is that $\Delta(j \omega)$ should rotate $W_{2}(j \omega) T(j \omega)$ so that $\Delta(j \omega) W_{2}(j \omega) T(j \omega)$ is negative real. The details of how to construct such an allowable Δ are omitted. Now we have

$$
\begin{aligned}
& \left\|\frac{W_{1} S}{1-\left|W_{2} T\right|}\right\|_{\infty}=\frac{\left|W_{1} S\right|}{1-\left|W_{2} T\right|} \\
= & \frac{\left|W_{1} S\right|}{\left|1+\Delta W_{2} T\right|} \leq\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}
\end{aligned}
$$

So, from this and (1.28) there follows (1.50).
Test (1.26) also has a nice graphical interpretation. For each frequency ω, construct two closed disks: one with center -1 , radius $\left|W_{1}(j \omega)\right|$, the other with center $L(j \omega)$, radius $\left|W_{2}(j \omega) L(j \omega)\right|$. More generally, let's say that robust performance level α is achieved if

$$
\left\|W_{2} T\right\|_{\infty}<1 \text { and }\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}<\alpha, \quad \forall \Delta .
$$

Noting that at every frequency

$$
\max _{|\Delta|<1}\left|\frac{W_{1} S}{1+\Delta W_{2} T}\right|=\frac{\left|W_{1} S\right|}{1-\left|W_{2} T\right|}
$$

We get that the minimum α equals

$$
\begin{equation*}
\left\|\frac{W_{1} S}{1-\left|W_{2} T\right|}\right\|_{\infty} . \tag{1.29}
\end{equation*}
$$

We allow Δ to satisfy $\|\Delta\|_{\infty}<\beta$. Application of Theorem (1.6) shows that internal stability is robust if $\left\|\beta W_{2} T\right\|_{\infty}<1$. let's say that the uncertainty level β is permissible if

$$
\left\|\beta W_{2} T\right\|_{\infty}<1 \text { and }\left\|\frac{W_{1} S}{1+\Delta W_{2} T}\right\|_{\infty}<1, \forall \Delta .
$$

Again, noting that

$$
\max _{|\Delta|<1}\left|\frac{W_{1} S}{1+\beta \Delta W_{2} T}\right|=\frac{\left|W_{1} S\right|}{1-\beta\left|W_{2} T\right|^{\prime}},
$$

we get that the maximum β equals

$$
\left\|\frac{W_{2} S}{1-\left|W_{1} T\right|}\right\|_{\infty}^{-1}
$$

Now we turn briefly to some related problems.

References:

[1] D. Alazard, J.P. Chr'etien, and M. Le Du. Attitude control of a telescope with flexible modes. In Dynamic and Control of Large Structures in Space, pages 15-19, London, UK, June 1996.
[2] H. A. Simon. Dynamic programming under uncertainty with a quadratic criterion function. Econometrica, pages 171-187, feb 1956.
[3] A.Isidori. . Nonlinear control systems: an introduction., Springer-Verlag, A. Isidori. Nonlinear Control Systems. Springer-Verlag, 1989.
[4] A.Bonnard, I. Kupka, .The'orie des singularites de l'application entree/sortie et optimalite des singulieres dans le problem du temps minimal., Forum Mathematicum Vol. 5 (1993), pp. 111-159.
[5] M.U. Akhmet, Shadowing and dynamical synthesis, Int. J. Bifurcation Chaos, Int. J. Bifurcation Chaos, 19, no 10 (2009d) 1-8.
[7] F. M. Pait. On the topologies of spaces on linear dynamical systems commonly employed as models for adaptive and robust control design. In Proceedings of the Third SIAM Conference on Control and Its Applications, 1995.
[8] Kushner, H. and Dupuis, P. (2001) Numerical Methods for Stochastic Control Problems in Continuous Time (2nd ed). Springer.
[9] M. A. Aizerman and F. R. Gantmacher. Absolute Stability of Regulator Systems. Holden-Day, 1964. Lecture notes on Logically Switched Dynamical Systems 161.
[10] Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Boston, 1997. Springer SMAI, Vol. 40.
[11] V. Jurdjevic,. Geometric Control Theory., Cambridge University Press, (1997).

